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The primary symptoms of attention deficit/hyperactivity disorder (ADHD) include poor impulse control and
impaired regulation of attention. Research has shown that the prefrontal cortex (PFC) is essential for the “top-
down” regulation of attention, behavior, and emotion, and that this brain region is underactive in many
patients with ADHD. The PFC is known to be especially sensitive to its neurochemical environment; relatively
small changes in the levels of norepinephrine and dopamine can produce significant changes in its function.
Therefore, alterations in the pathways mediating catecholamine transmission can impair PFC function, while
medications that optimize catecholamine actions can improve PFC regulation of attention, behavior, and
emotion. This article reviews studies in animals showing that norepinephrine and dopamine enhance PFC
function through actions at postsynaptic α2A-adrenoceptors and dopamine D1-receptors, respectively.
Stimulant medications and atomoxetine appear to enhance PFC function through increasing endogenous
adrenergic and dopaminergic stimulation of α2A-receptors and D1-receptors. In contrast, guanfacine mimics
the enhancing effects of norepinephrine at postsynaptic α2A-receptors in the PFC, strengthening network
connectivity. Stronger PFC regulation of attention, behavior, and emotion likely contributes to the therapeutic
effects of these medications for the treatment of ADHD.
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Basic studies of catecholamine actions in the prefrontal cortex
(PFC) have helped us understand how genetic insults in catechol-
amine signaling pathways may lead to symptoms of attention deficit/
hyperactivity disorder (ADHD), and how current medications may
alleviate symptoms of weak attention and impulse control in ADHD
and related disorders. The following provides a brief review of PFC
functions and their modulation by catecholamine signaling pathways.

1. The prefrontal cortex and attention deficit/hyperactivity disorder

The PFC is the most recently evolved region of the brain,
subserving our highest order cognitive abilities. The cellular networks
of the PFC are able to maintain representations of goals and rules and
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use remembered information to guide attention, actions, and emotion
(Goldman-Rakic, 1995). Current evidence supports the role of the PFC
in the regulation of top-down attention, i.e. attention based on
relevance (Buschman and Miller, 2007). Extensive projections to the
sensory association cortices allow the PFC to suppress processing of
irrelevant distractions and enhance processing of meaningful stimuli
that may not be inherently captivating (e.g. homework) (Barbas et al.,
2005; Yamaguchi and Knight, 1990) (Fig. 1). Depending on task
demands, the PFC facilitates sustained attention on a single task
(Wilkins et al., 1987) or manages rapid shifts in attention to
accomplish multiple sequential tasks (Robbins, 2007). In addition to
regulating attention, the PFC also regulates behavior and emotions.
The right inferior PFC is especially important for reducing impulsive
behavior and inhibiting inappropriate actions (Aron et al., 2004),
while the orbital and ventromedial PFC is essential for the regulation
of emotion, such as the inhibition of aggressive impulses (Best et al.,
2002; Izquierdo et al., 2005; Price et al., 1996). These PFC regions act
in concert to carry out the executive functions of planning and
organizing appropriate actions, thoughts, and emotions.

Several imaging studies have shown that the dorsolateral PFC has a
smaller volume and reduced activity in patients with ADHD compared
with controls (Castellanos et al., 2002, 2008; Mostofsky et al., 2002;
Rubia et al., 1999; Seidman et al., 2005). Decreased PFC activity is
particularly evident in the performance of tasks that require sustained
attention or inhibition of inappropriate movement (Rubia et al.,
2005). In patients with ADHD, the white matter tracts that link the
PFC to other brain regions also appear less well organized (Casey et al.,
2007; Makris et al., 2008), and functional connectivity is reduced
(Castellanos et al., 2008). Thus, PFC regulation of posterior cortical and
subcortical structures is likely to be less effective in patients with
ADHD, leading to decreased top-down regulation of attention,
behavior, and emotion. In addition, the volumes of other brain
regions, such as the caudate and cerebellum, which have reciprocal
connections with the PFC, have been reported to be smaller in
children with ADHD than in control subjects in some studies
(Castellanos et al., 2002). The PFC is slow to mature, reaching adult
dimensions in the early 20s (Giedd, 2004). There is evidence of
delayed maturation of the PFC in children with ADHD (Shaw et al.,
2007). This delayed maturation may vary in degree, which may
explain why ADHD continues into adulthood for some individuals, yet
may resolve in others. Recent studies have found slowermaturation of
PFC in typically developing adolescents with weaker impulse control,
indicating that this is a dimensional characteristic related to the
integrity of PFC gray matter (Shaw et al., 2011).
Fig. 1. The PFC regulates attention, behavior, and emotion through extensive network
connections with other brain regions. Networks of neurons within the PFC (insert)
excite each other to maintain representations of goals and rules used to guide attention,
behavior, and emotion.
The PFC regulates attention, behavior, and emotion through
networks of pyramidal neurons that interconnect on dendritic spines
(Fig. 1, inset). PFC networks are able to excite each other in the
absence of external environmental stimulation, thus representing
information such as goals for behavior, our “mental sketch pad”
(Goldman-Rakic, 1995). However, recurrent PFC network activity is
fragile, and extremely sensitive to the neurochemical environment.
Thus, small changes in the arousal systems can markedly alter the
connectivity of PFC networks (Arnsten et al., 2010). In particular,
these PFC connections require that catecholamine concentrations be
maintained at optimal levels (Arnsten, 2007).

2. Catecholamine effects on PFC function

The release of the catecholamines norepinephrine (NE) and
dopamine (DA) in the PFC is related to arousal state (Fig. 2). Low
arousal conditions are associated with very low levels of NE cell firing
(Aston-Jones et al., 2000; Foote et al., 1980). In contrast, under
conditions of alert interest, there is moderate tonic firing, and
increased phasic firing of NE and DA to relevant stimuli (Aston-Jones
et al., 2000, 1994; Finlay et al., 1995; Foote et al., 1980; Schultz, 1998).
Under stressful conditions, there are high levels of catecholamine
release in PFC (Deutch and Roth, 1990; Finlay et al., 1995), which may
arise from high, tonic firing of NE neurons (Aston-Jones et al., 2000,
1994), and DA neurons that respond to aversive events (Matsumoto
and Hikosaka, 2009). Thus, the level and timing of catecholamine
release in PFC can coordinate arousal state and PFC function.

The effects of NE and DA on arousal, mood, and behavior are
mediated through interactions with an extensive range of receptors
that demonstrate varying affinities for these catecholamines. DA acts
at both the D1 (D1- and D5-receptors) and D2 (D2-, D3-, and D4-
receptors) families of receptors. These receptors have distinct
localizations in primate PFC. D2-receptors in the PFC are concentrated
in layer V neurons where they also increase response-related firing
(Wang et al., 2004). DA also acts at D4-receptors in the PFC, where it
inhibits interneurons (Mrzljak et al., 1996; Wang et al., 2002).
However, the most prominent dopaminergic actions in the PFC arise
from actions at D1-receptors, which are found in both superficial and
deep layers of the primate PFC (Lidow et al., 1991). D1-receptors have
fundamental excitatory effects on PFC function, but alsomodify inputs
to pyramidal cells (Vijayraghavan et al., 2007).

NE acts chiefly at α1-, α2-, and β-receptors; the α2-receptors are
further subdivided as α2A, α2B, and α2C. These subtypes are located
presynaptically on noradrenergic neurons, dendrites, or axon terminals,
and postsynaptically on neurons receiving noradrenergic input.
Although presynaptic receptors are the most recognized, the
majority of α2-receptors in the brain are postsynaptic (U'Prichard
et al., 1979). Among noradrenergic receptors, NE has the highest
affinity for α2-receptors, with lower affinity for α1- and β-receptors
(Arnsten, 2000). Studies in animals indicate that NE engages
predominantly α2-receptors in the PFC when the subject is alert
and interested (Li and Mei, 1994), while actions at α1-receptors and
possibly β-receptors are predominant under stressful conditions
(Birnbaum et al., 2004; Ramos et al., 2005). Among the α2-receptors,
the α2A subtype is the most prevalent in the PFC and is found both
presynaptically on noradrenergic terminals and postsynaptically on
the dendritic spines of PFC pyramidal cells that receive network
inputs (Aoki et al., 1998; Wang et al., 2007). Although previous
research focused on presynaptic receptor actions, research has
established that the beneficial effects of α2-agonists arise from
stimulation of postsynaptic α2A-receptors in the PFC (Arnsten and
Goldman-Rakic, 1985; Cai et al., 1993).

The effectiveness of PFC network connections relies on noradren-
ergic stimulation ofα2A-receptors on the spines of PFC pyramidal cells
(Wang et al., 2007). Theseα2A-receptors are localized on the dendritic
spines near ion channels that control the impact of synaptic inputs on



Fig. 2. The PFC is very sensitive to its neurochemical environment; both insufficient and excessive catecholamine release impair PFC function. The catecholamines norepinephrine
(NE) and dopamine (DA) are released in the PFC according to arousal state: very little during fatigue (and boredom?), a moderate amount of phasic release to relevant stimuli during
alert, nonstressed waking, and high tonic release under stressful conditions. Moderate levels of NE engage postsynaptic α2A-receptors to improve PFC function, while higher levels
engage α1- and β-receptors, which impair PFC function. Thus, optimal regulation of PFC function depends on postsynaptic α2A- and moderate D1-receptor stimulation. Animal
studies suggest that therapeutic doses of stimulants improve PFC function by increasing endogenous noradrenergic and dopaminergic stimulation of α2A- and D1-receptors,
respectively. ADHD=attention deficit/hyperactivity disorder.
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the spine (Wang et al., 2007). When these ion channels are open,
nearby synaptic inputs are diverted and the incoming information
escapes, weakening the synaptic connection (Fig. 3). Alternatively,
noradrenergic stimulation of α2A-receptors initiates a cascade of
chemical events that close these ion channels, strengthening the
synaptic connection. The strengthened synaptic connections enable
the PFC to regulate attention, behavior, and emotion more effectively.
Blockade of α2A-receptors in the monkey PFC with local yohimbine
infusions markedly impairs PFC regulation of attention and behavior,
Fig. 3. Stimulation of postsynaptic, α2A-receptors on PFC neurons by norepinephrine (NE)
neurons. Manyα2A-receptors are found on the dendritic spines where PFC neurons form netw
monophosphate (cAMP) levels are high, potassium channels open, weakening nearby synap
regulate attention, behavior, or emotion. Bottom row: When α2A-receptors are stimulated b
network inputs, and facilitating PFC function.
inducing poor impulse control and locomotor hyperactivity (Li and
Mei, 1994; Ma et al., 2005, 2003). In humans, lower activity of
dopamine β-hydroxylase, the enzyme that synthesizes NE, is
associated with poor sustained attention (Greene et al., 2009), poor
executive function (Kieling et al., 2008), and impulsiveness (Hess
et al., 2009), demonstrating that endogenous NE is important for
proper PFC regulation.

In the PFC, DA plays a role complementary to that of NE, decreasing
PFC neuronal activity in response to irrelevant stimuli (Vijayraghavan
or guanfacine strengthens the functional connections between prefrontal cortex (PFC)
ork connections. Top row:When there is noα2A-receptor stimulation, cyclic adenosine

tic inputs. As a result, PFC network firing decreases, and there is weakened capability to
y NE or by guanfacine, they close nearby potassium channels, increasing the efficacy of

image of Fig.�2
image of Fig.�3
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et al., 2007). Dopaminergic stimulation of D1-receptors opens ion
channels on a set of dendritic spines that receive inputs irrelevant to
focused working memory and attention. Opening channels on these
spines weakens irrelevant network connections, reducing noisy input
to the neuron and enhancing the efficiency of PFC function. However,
diminishing these connections excessively may be harmful in
situations that require broad attention or creative solutions. In these
instances, a wider range of synaptic inputsmay be helpful. In addition,
DA D1-receptor overstimulation (e.g., under a stressful condition)
may lead to disconnection of all network inputs and the cell may stop
firing. As a result, PFC neurons require a specific amount of DA to
function optimally (Arnsten et al., 2009; Vijayraghavan et al., 2007).

PFC function is also impaired by excessive NE release. High levels
of NE release, such as those encountered during a stressful condition,
engage α1-receptors that suppress PFC cell firing (Birnbaum et al.,
2004). α1-Receptor stimulation impairs working memory by activat-
ing protein kinase C intracellular signaling, which is thought to be
overactive in patients with bipolar disorder (Birnbaum et al., 2004).

3. Likely mechanisms of action of ADHD medications

All medications currently approved by the U.S. Food and Drug
Administration to treat ADHD enhance catecholamine transmission in
the PFC. The stimulants methylphenidate and amphetamine block
reuptake at NE and DA transporters, while atomoxetine more
selectively targets the NE transporter. However, as the NE transporter
clears both NE and DA in the PFC, atomoxetine increases both DA and
NE in the rat PFC (Bymaster et al., 2002).

3.1. Stimulants enhance both DA and NE actions in PFC

Historically, studies of stimulant actions in ADHD have focused on
the effects on DA (Swanson and Volkow, 2002). This focus has arisen,
in part, from the fact that positron emission tomography (PET)
imaging studies can visualize DA receptors in the striatum, but these
studies are unable to visualize changes in NE or DA in the PFC. This
view is also based on older biochemical studies in rats that used high
doses of stimulants, which increased locomotor activity and had
pronounced effects on DA release throughout the brain. However,
more recent biochemical studies in rats have shown that lower doses
of stimulants, which produce blood levels similar to those in patients
with ADHD, preferentially increase NE in the PFC (Berridge et al.,
2006). These lower doses in rats improve PFC attention and working
memory function, enhance PFC neuronal response, and reduce
locomotor hyperactivity in juveniles (Arnsten and Dudley, 2005;
Berridge et al., 2006; Kuczenski and Segal, 2002). Importantly, these
doses have less effect on subcortical DA release in areas such as the
nucleus accumbens (Berridge et al., 2006), which may explain why
they do not cause addiction when they are used as prescribed. Animal
studies have shown that therapeutic doses of methylphenidate and
atomoxetine improve PFC function by increasing endogenous NE
stimulation ofα2-receptors and DA stimulation of D1-receptors in rats
(Arnsten and Dudley, 2005) and monkeys (Gamo et al., 2010). These
agents produce an inverted U dose response, whereby higher doses
can actually impair PFC cognitive performance in monkeys (Gamo
et al., 2010). Stimulant medications might also exert therapeutic
effects through actions in striatum (e.g. caudate), and in the posterior
association cortices in addition to the PFC. PET imaging studies have
shown that therapeutic doses of stimulant medications engage DA
receptors in striatum (Swanson and Volkow, 2002), consistent with
the small but significant increases in DA release measured in rodent
striatum (Berridge et al., 2006). Since PET imaging is unable to detect
catecholamine actions in the cortex, drug actions in the sensory
association cortices remain speculative. However, excessive doses of
stimulants impair PFC function, which may account for the cognitive
inflexibility observed when patients with ADHD are administered
these doses of stimulant medication (Dyme et al., 1982).

Contrary to common views on stimulantmedications, the effects of
stimulants for the treatment of ADHD are not paradoxical. When
administered in appropriate doses, these medications improve PFC
function both in healthy human subjects (Elliott et al., 1997) and in
animals (Arnsten and Dudley, 2005), including the reduction of
locomotor hyperactivity in juvenile rats (Kuczenski and Segal, 2002).
Higher doses of stimulants induce hyperactivity and addiction in rat
models, but these doses exceed those given clinically (Segal and
Kuczenski, 1987). Indeed, imaging studies have shown that methyl-
phenidate enhances the efficiency of PFC activity both in healthy
college students (Mehta et al., 2000) and in subjects with ADHD (Bush
et al., 2008). These measureable positive effects of stimulants on
attention in subjects without ADHD reflect the sensitivity of the PFC to
relatively small changes in catecholamine levels. Interestingly, recent
data have shown that stimulant medication can normalize gray
matter volume in the developing PFC of patients with ADHD (Shaw
et al., 2009). This finding counters fears that stimulant medications
could interfere with brain development.

3.2. Atomoxetine enhances NE and DA transmission in PFC

Atomoxetine increases extracellular availability of both NE and DA
in the rat PFC (Bymaster et al., 2002). Atomoxetine improves
measures of PFC cognitive function in rats (Newman et al., 2008;
Robinson et al., 2008; Seu et al., 2009), monkeys (Gamo et al., 2010;
Seu et al., 2009), and humans (Chamberlain et al., 2007, 2006). Recent
studies in monkeys performing a working memory task show that
atomoxetine produces an inverted U dose response, similar to that
seen with stimulants (Gamo et al., 2010). Thus, optimal doses
improved working memory performance in monkeys, while higher
doses impaired performance. The enhancing effects were blocked by
co-administration of either an NE alpha-2 or DA D1 antagonist (Gamo
et al., 2010). Interestingly, the optimal dose varied widely, which may
explain variability of drug response in patients (Castellanos and Kelly,
2010). An inverted U dose response was also observed at the neuronal
level when atomoxetine was iontophoretically applied onto PFC
neurons in monkeys performing a working memory task. Lower
“optimal” amounts of atomoxetine enhanced “signals” (neuronal
firing during the delay period for the neuron's preferred direction) via
indirectly increasing NE stimulation of alpha-2A receptors, and/or
decreased “noise” (neuronal firing for nonpreferred directions) via
indirectly increasing DA stimulation of D1 receptors (Gamo et al.,
2010). In humans, both normal subjects (Chamberlain et al., 2006)
and patients with ADHD (Chamberlain et al., 2007) show improved
PFC inhibition of behavior following atomoxetine, consistent with the
animal data.

3.3. Guanfacine mimics NE at postsynaptic PFC α2A-receptors

Guanfacine is the most selective α2A-adrenoceptor agonist
currently available, with higher affinity for the α2A- than for the
α2B- or α2C-adrenoceptor subtypes (Uhlén et al., 1995; Uhlen and
Wikberg, 1991), and little affinity for the brainstem imidazoline I1
receptors that contribute to the potent hypotensive actions of
clonidine (van Zwieten and Chalmers, 1994). In addition, guanfacine
has weaker actions at presynaptic α2-receptors, where its activity is
only one-tenth that of clonidine (Engberg and Eriksson, 1991). Not
only does guanfacine mimic noradrenergic actions at α2A-receptors,
its activity at postsynaptic α2-receptors may restore PFC function in
patients with ADHD (Biederman et al., 2008; Scahill et al., 2001).
Conversely, yohimbine blockade of α2-receptors in the PFC recreates
the symptoms of ADHD: inducing locomotor hyperactivity (Ma et al.,
2005), poor impulse control (Ma et al., 2003), and weaker working
memory (Li and Mei, 1994).
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Guanfacine enhances various PFC functions in animals, including
improvements in working memory (Arnsten et al., 1988), behavioral
inhibition (Steere and Arnsten, 1997), and reduced distractibility
(Arnsten and Contant, 1992). These improvements are observed
immediately when guanfacine is infused directly into the PFC (Mao
et al., 1999) and when administered systemically (Arnsten et al.,
1988; O'Neill et al., 2000; Rama et al., 1996). Dose–response studies in
monkeys suggest that guanfacine-induced enhancement of PFC
function can be completely dissociated from the sedative effects of
guanfacine (Arnsten et al., 1988). The sedative effects of guanfacine
may arise from a variety of actions, including stimulation of
presynaptic α2A-receptors on noradrenergic cell bodies and terminals
as well as postsynaptic α2B-receptors in the thalamus (Berridge et al.,
2003; McCormick et al., 1991).

The improvements in PFC function observed in animal studies of
guanfacine treatment appear to extend to human subjects; double-blind
placebo-controlled studies have demonstrated that guanfacine is effective
in treating ADHD symptoms. In 2 short-term, placebo-controlled, double-
blind pivotal trials, an extended-release formulation of guanfacine
(Intuniv™, Shire US Inc.) has shown efficacy asmonotherapy for reducing
symptoms of ADHD based on clinician-rated ADHD Rating Scale IV
(ADHD-RS-IV) total score as well as the hyperactivity/impulsivity and
inattentiveness subscale scores (Biederman et al., 2008; Sallee et al.,
2009). Immediate-release guanfacine has also demonstrated positive
effects in other disorders characterized by impaired PFC function, such as
children with ADHD and tic disorders (Scahill et al., 2001). In that study,
immediate-release guanfacine was superior to placebo on teacher ratings
of inattention and hyperactivity on the ADHD-RS-IV. Finally, there are 2
trials in childrenwith pervasive developmental disorder accompanied by
hyperactivity and impulsiveness in which immediate-release guanfacine
shows promise, thoughmore study is needed in this population (Handen
et al., 2008; Scahill et al., 2006).

4. Summary and future directions

In summary, improved understanding of catecholamine actions in
the PFC has helped to lead to new treatments for ADHD. Important
directions for the future include better understanding of PFC
subregions, and deeper understanding of second messenger actions
that regulate PFC circuits. As altered “top-down” PFC control of
behavior, thought and emotion is central to most neuropsychiatric
disorders, these studies are relevant to many cognitive disorders. We
must respect that cognition is not a unitary phenomenon, and that
different brain circuits and cognitive operations may have distinct
neurochemical needs.
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